## Information and Coding Theory

## ENEE 5304

## Problem Set 2

1. A source generates one of four symbols randomly every one time unit. The probabilities of the symbols are $0.4,0.3,0.2,0.1$. Each emitted symbol is independent of the other symbols in the sequence
a. Construct a Huffman code for the source
b. Find the average length of the code in bits/codeword
c. What is the minimum achievable average code length?
2. Consider a source S with the given alphabet and the associated probabilities

| Symbol | A | B | C | D | E | F | G | H |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Probability | 0.4 | 0.18 | 0.1 | 0.1 | 0.07 | 0.06 | 0.05 | 0.04 |
| codeword | 1 | 001 | 011 | 0000 | 0100 | 0101 | 00010 | 00011 |

a. Find a Huffman code and compare it to that given in the table
b. Find the average length of the code in bits/codeword
c. How far is the average code length from the Entropy?
3. Perform a Lempel-Ziv compression of the string given below

000111000011100110001010011100101110111011110001101101110111000010 001100011
4. What is the shortest possible code length, in bits per average symbol, that could be achieved for a six-letter alphabet whose symbols have the following probability distribution?
$\{1 / 2,1 / 4,1 / 8,1 / 16,1 / 32,1 / 32\}$
5. Construct an efficient, uniquely decodable binary code, having the prefix-free property and having the shortest possible average code length per symbol, for an alphabet whose five letters appear with these probabilities:

| Letter | Probability |
| :---: | :---: |
| A | $1 / 2$ |
| B | $1 / 4$ |
| C | $1 / 8$ |
| D | $1 / 16$ |
| E | $1 / 16$ |

